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Abstract
It is shown that the continuous q-Hermite polynomials for q, a root of unity,
have simple transformation properties with respect to the classical Fourier
transform. This result is then used to construct q-extended eigenvectors of the
finite Fourier transform in terms of these polynomials.
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Mathematics Subject Classification: 33D45, 42A38

1. Introduction

The finite Fourier transform [26, chapter 7] (also called discrete Fourier transform) is defined
as the Fourier transform associated with the finite Abelian group ZN := Z/(NZ) of integers
modulo N [25, 19], just as the classical integral Fourier transform is the Fourier transform
associated with R. In concrete terms, it is a linear transformation �(N) of the space of functions
on Z with period N defined by

(�(N)f )(r) := 1√
N

N−1∑
s=0

exp

(
2π i

N
rs

)
f (s), r ∈ Z. (1.1)

Equivalently, if we identify the N-periodic function f on Z with the vector

(f (0), f (1), . . . , f (N − 1))

in C
N , then �(N) is a unitary operator on C

N with matrix elements

�(N)
rs = 1√

N
exp

(
2π i

N
rs

)
, 0 � r, s � N − 1. (1.2)
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We are interested in a suitable basis of N eigenvectors f (N)
n (n = 0, 1, . . . , N − 1) of �(N),

which thus should satisfy the eigenvalue equation

N−1∑
s=0

�(N)
rs f (N)

n (s) = λnf
(N)
n (r) (1.3)

for suitable eigenvalues λn. Since the fourth power of �(N) is the identity operator (or matrix),
λn’s can only be equal to ±1 or ±i.

The finite Fourier transform has deep roots in classical pure mathematics and it is also
extremely useful in applications. See [12, 27] for mathematical and historical details and
[13, 14] for the relation with Gauss sums.

Mehta studied in [22] the eigenvalue problem (1.3) and found analytically a set of
eigenvectors F (N)

n of the finite Fourier transform �(N) of the form

F (N)
n (r) :=

∞∑
k=−∞

e− π
N

(kN+r)2
Hn

(√
2π

N
(kN + r)

)
, r = 0, 1, . . . , N − 1, (1.4)

where Hn (x) is the Hermite polynomial of degree n in x. These eigenvectors F (N)
n correspond

to the eigenvalues λn = in, that is,

N−1∑
s=0

�(N)
rs F (N)

n (s) = inF (N)
n (r), r = 0, . . . , N − 1. (1.5)

They can be considered as a discrete analogue of the well-known continuous case where the
Hermite functions e−x2/2Hn(x) are constant multiples of their own Fourier transforms:

1√
2π

∫ ∞

−∞
eixy−x2/2Hn(x) dx = in e−y2/2Hn(y). (1.6)

It was conjectured by Mehta [22] that F (N)
n (n = 0, 1, . . . , N − 1, if N is odd and

n = 0, 1, . . . , N − 2, N, if N is even) are linearly independent, but this problem has not
been any further considered until now. As shown by Ruzzi [24], these systems are in general
not orthogonal.

In later work, it was shown that many q-extensions of the classical orthogonal polynomials
satisfy simple transformation properties under the Fourier transform (see [7] and references
therein). Thus it was natural to repeat Mehta’s construction of eigenfunctions of the finite
Fourier transform in that context. This was done in [9, 8, 11]. In particular, it was shown
there that the finite Fourier transform provides a link between continuous q-Hermite and q−1-
Hermite polynomials of Rogers, as well as between families of Rogers–Szeg ′′o and Stieltjes–
Wigert polynomials. It turned out that the same form of connection exists also between
discrete q-Hermite polynomials of types I and II, see [3].

Zhedanov [28] considered continuous q-Hermite polynomials for q a root of unity and
he obtained a discrete orthogonality on finitely many points with complex weights for a finite
system of such polynomials. In the present paper, we consider the transformation properties
of these polynomials under the integral and finite Fourier transforms. Analytically, this
turns out to be a straightforward extension of the earlier results for the continuous q-Hermite
polynomials with 0 < q < 1. However, the resulting formulae, a little different from the case
that q is real, are interesting enough to be displayed.

Another feature of the present paper, compared with [9, 8, 11], is that we emphasize a
more conceptual approach by using theorem 4.1 due to Dahlquist [16] and Matveev [21] and
the (trivial) lemma 5.1, rather than repeating a technical argument in each special situation.
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The contents of the paper are as follows. In section 2, we recall some properties of the
continuous q-Hermite polynomials for general complex q, and in particular for q a root of
unity. In section 3, we consider the behaviour of these polynomials times a Gaussian under
the integral Fourier transform. This result, together with the Dahlquist–Matveev theorem 4.1,
then gives a construction of functions behaving nicely under the finite Fourier transform. In
section 5, using lemma 5.1 we obtain from these functions and their Fourier image
eigenfunctions of the finite Fourier transform. Finally, section 6 concludes the paper with
a brief discussion of some further research directions of interest.

Throughout our exposition we employ standard notations of the theory of special functions
(see, for example [2, 17]).

2. q-Hermite polynomials for q a root of unity

The continuous q-Hermite polynomials of Rogers (see [1, 6, 23]), denoted by Hn (x|q), can
be generated for any q ∈ C by the three-term recurrence relation

2xHn(x|q) = Hn+1(x|q) + (1 − qn)Hn−1(x|q) (2.1)

with initial condition H0 (x|q) = 1. Their explicit form in terms of a terminating basic
hypergeometric 2φ0 series is given by

Hn (cos θ |q) =
n∑

k=0

[
n

k

]
q

ei(n−2k)θ , (2.2)

where the symbol
[n
k

]
q

stands for the q-binomial coefficient[
n

k

]
q

:= (q; q)n

(q; q)k(q; q)n−k

=
[

n

n − k

]
q

. (2.3)

Here (a; q)n is the q-shifted factorial, see [17, (1.2.15)]. The right-hand sides of (2.2) and
(2.3) are well defined for all q ∈ C because the q-binomial coefficients are polynomials in q.

Since sin θ = cos
(

1
2π − θ

)
we can rewrite (2.2) as

Hn (sin θ |q) = in
n∑

k=0

[
n

k

]
q

(−1)k ei(2k−n)θ . (2.4)

The polynomials Hn(x|q) are orthogonal polynomials for 0 < q < 1. For q > 1 they are
orthogonal polynomials in ix : the q−1-Hermite polynomials (see [5]) denoted by

hn(x|q) := i−nHn(ix|q−1). (2.5)

Another case of orthogonality, but not with positive weights, was considered for q a root
of unity, see [28]. For M a positive integer put

qj,M := exp (2π ij/M), j ∈ {1, 2, . . . , M − 1}. (2.6)

For such q = qj,M (2.1) and (2.2) remain valid. In particular, for q = qj,M with j and M
co-prime and for n = M , the only non-vanishing terms in (2.2) occur for k = 0 and M. Hence,
for j and M co-prime, we have

HM(cos θ |qj,M) = 2 cos Mθ =: 2TM(cos θ), (2.7)

where TM(x) is a Chebyshev polynomial of the first kind (see, for example [2, remark 2.5.3]).
As pointed out in [28], the polynomials Hn(x|qj,M) (n = 0, 1, . . . , M − 1) satisfy a

discrete orthogonality with possibly complex weights on the M zeros of TM(x) if j and M
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are co-prime. It is for functions suitably defined in terms of these polynomials that we will
discuss their integral and finite Fourier transforms.

Finally observe that, by induction with respect to m and n, we derive from (2.1) and (2.7)
that, for j and M co-prime,

HmM+n(x|qj,M) = (2TM(x))mHn(x|qj,M), n = 0, 1, . . . , M − 1, m = 0, 1, . . . .

(2.8)

3. Integral Fourier transform

There are q-extensions of the eigenfunction result (1.6) for the integral Fourier transform.
These interrelate certain q-polynomial families (see [7] and references therein). For the
continuous q-Hermite polynomials we obtain,

Lemma 3.1. The Fourier transform of the functions e−x2/2Hn(sin(λx)|q) is given by

1√
2π

∫ ∞

−∞
eixy−x2/2Hn(sin(λx)|q)dx = ine−n2λ2/2e−y2/2

×
n∑

k=0

[
n

k

]
q−1

(
q−1e−2λ2)k(k−n)

(−1)ke−(2k−n)λy, λ, q ∈ C, q �= 0, 1. (3.1)

In particular, if q = e−2λ2
then

1√
2π

∫ ∞

−∞
eixy−x2/2Hn(sin(λx)|q)dx = qn2/4e−y2/2Hn(sin(iλy)|q−1). (3.2)

Proof. Substitute (2.4) on the left-hand side, take termwise Fourier transforms (which turns
down to the Fourier transform of the Gaussian) and use that[

n

k

]
q−1

= qk(k−n)

[
n

k

]
q

.

If q = e−2λ2
then we see by (2.4) that (3.1) simplifies to (3.2). �

We consider two cases of equation (3.2). First let 0 < q < 1 and define κ by

q = exp(−2κ2), 0 < κ < ∞. (3.3)

Then, by (2.5), we obtain (see [7, 10])

Proposition 3.2. The Fourier transform of the functions e−x2/2Hn(sin κx|q) is given by

1√
2π

∫ ∞

−∞
eixy−x2/2Hn (sin κx|q) dx = inqn2/4e−y2/2hn (sinh κy|q) . (3.4)

Second, let q := qj,M as in (2.6) and put λ := αj,M , where

αj,M :=
√

πj

M
e−π i/4, hence e−2α2

j,M = qj,M and iαj,M = αj,M. (3.5)

Proposition 3.3. The Fourier transform of the functions e−x2/2Hn(sin(αj,Mx)|qj,M) is given
by

1√
2π

∫ ∞

−∞
eixy−x2/2Hn(sin(αj,Mx)|qj,M) dx = q

n2/4
j,M e−y2/2Hn

(
sin(αj,My)

∣∣q−1
j,M

)
. (3.6)

4
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The Fourier inversion formula of (3.6) is just the result of taking complex conjugates
on both sides of (3.6). We will mostly work with (3.6) for n = 0, 1, . . . , M − 1, but this
formula remains valid for all nonnegative integer values of n. In particular, for n = mM

(m = 0, 1, . . .), formula (3.6) takes by substitution of (2.8) the form

1√
2π

∫ ∞

−∞
cosm(Mπ/2 −

√
πjM e−iπ/4x) eixy−x2/2 dx

= im
2jM e−y2/2 cosm(Mπ/2 −

√
πjM eiπ/4y). (3.7)

Depending on the value of M mod 4 this may be further simplified.

Remark 3.4. Formulae (3.4) and (3.6) can be considered as q-analogues of formula (1.6), in
the sense that (1.6) can be obtained as the limit for q↑1 of (3.4) and as the limit for M → ∞
of (3.6) with j fixed. Indeed, from [18, (5.26.1)] we have

lim
q→1

(√
1

2
(1 − q)

)−n

Hn

(
x

√
1

2
(1 − q)

∣∣∣∣q
)

= Hn(x). (3.8)

Since κ ∼ ((1 − q)/2)
1
2 as q↑1, it follows from (3.8) that

lim
q↑1

κ−nHn(sin(κx)|q) = Hn(x),

lim
q↑1

(iκ)−nHn(sin(iκy)|q−1) = Hn(y).

Hence, in view of (2.5), equation (3.4) with both sides multiplied by κ−n tends to (1.6) as q↑1.
As for (3.6) with j fixed, we have αj,M ∼ ((1 − qj,M)/2)

1
2 as M → ∞. Hence it follows

from (3.8) that

lim
M→∞

α−n
j,MHn(sin(αj,Mx)|q) = Hn(x),

lim
M→∞

α−n
j,MHn(sin(αj,My)|q−1) = Hn(y).

Then (3.6) with j fixed and with both sides multiplied by α−n
1,M tends to (1.6) as q↑1.

4. Finite Fourier transform

It was observed by Dahlquist [16, theorem 1] and Matveev [21, theorem 8.1] that Mehta’s
result (1.5) is a special case of the following more general relationship between integral Fourier
transform and finite Fourier transform, which can be obtained as an immediate consequence
of the Poisson summation formula. This result will hold for f in a wide class of functions on
R, but for convenience we only formulate it for f ∈ S, the space of Schwartz functions on R

(see [26, chapter 5, section 1.3]).

Theorem 4.1. Define a linear map M(N) from S to the space of N-periodic functions on Z by

(M(N)f )(r) :=
∑
k∈Z

f

(√
2π

N
(kN + r)

)
, f ∈ S, r ∈ Z. (4.1)

If f, g ∈ S are related by the integral Fourier transform

g(y) = 1√
2π

∫ ∞

−∞
eixyf (x) dx, (4.2)

5
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and if F := M(N)f,G := M(N)g then F and G are related by the finite Fourier transform
(1.1):

G(r) = 1√
N

N−1∑
s=0

exp

(
2π i

N
rs

)
F(s). (4.3)

In particular, in the case when g(x) = λf (x), λ = ±1,±i, one has G(r) = λF(r); so
Mehta’s eigenvectors (1.4) are a particular case of the general statement.

Let us now apply theorem 4.1 to the case where f and g are implied by (3.2), i.e.,

f (x) := e−x2/2Hn(sin(λx)|q), g(y) := e−y2/2Hn(sin(iλy)|q−1),

where λ, q ∈ C, q �= 0, 1 and q = e−2λ2
. Put

f (N)
n (r|q) := (M(N)f )(r) =

∞∑
k=−∞

e− π
N

(kN+r)2
Hn

(
sin

(
λ

√
2π

N
(kN + r)

)∣∣∣∣q
)

, (4.4)

g(N)
n (r|q) := q−n2/4(M(N)g)(r)

=
∞∑

k=−∞
e− π

N
(kN+r)2

Hn

(
sin

(
iλ

√
2π

N
(kN + r)

) ∣∣∣∣q−1

)
. (4.5)

Then we obtain by theorem 4.1

Proposition 4.2. The finite Fourier transform of the functions f (N)
n is given by

�(N)
(
f (N)

n (.|q)
)
(r) =

N−1∑
s=0

exp

(
2π i

N
rs

)
f (N)

n (s|q) = qn2/4g(N)
n (r|q). (4.6)

Just as we did in section 3 for (3.2), we consider two special cases of (4.6). First, let
0 < q < 1 and take λ = κ as in (3.3). Then (4.6) holds (see [9, 11]) with

g(N)
n (r|q) = in

∞∑
k=−∞

e− π
N

(kN+r)2
hn

(
sinh

(
κ

√
2π

N
(kN + r)

) ∣∣∣∣q
)

. (4.7)

Second, consider (4.6) with q = qj,M and λ = αj,M as in (3.5). Then (4.6) holds with

f (N)
n (r|qj,M) =

∞∑
k=−∞

e− π
N

(kN+r)2
Hn

(
sin

(
αj,M

√
2π

N
(kN + r)

) ∣∣∣∣qj,M

)
, (4.8)

g(N)
n (r|qj,M) =

∞∑
k=−∞

e− π
N

(kN+r)2
Hn

(
sin

(
αj,M

√
2π

N
(kN + r)

) ∣∣∣∣q−1
j,M

)

= f
(N)
n (r|qj,M). (4.9)

By similar reasoning as in remark 3.4 we see that (1.4) is a limit of (4.6) in these two cases
(as q↑1 in the first case and as M → ∞ in the second case). These limits are formal because
we have to take termwise limits for f (N)

n (s|q) and g(N)
n (r|q). Just as for the functions F (N)

n

given by (1.4), we do not know if the functions f (N)
n defined by (4.4) are linearly independent.

Let ε = ±1. From (4.1) we see that, if f (−r) = εf (r) for all r, then also (M(N)f )(−r) =
ε(M(N)f )(r) for all r. Also note from (2.1) that Hn (−x|q) = (−1)nHn (x|q). Hence, by
(4.4) and (4.5),

f (N)
n (−r|q) = (−1)nf (N)

n (r|q), g(N)
n (−r|q) = (−1)ng(N)

n (r|q).

6
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Thus consider (4.6) with f (N)
n and g(N)

n as in (4.8) and (4.9). Then take complex conjugates
on both sides and use the simple facts just mentioned above. Then we obtain

�(N)
(
f (N)

n (.|qj,M)
)
(r) = q

n2/4
j,M f

(N)
n (r|qj,M), (4.10)

�(N)
(
f

(N)
n (.|qj,M)

)
(r) = (−1)nq

−n2/4
j,M f (N)

n (r|qj,M). (4.11)

Remark 4.3. It is tempting to consider the case q = qj,M and λ = αj,M of (4.6) with M = N ,
even if one loses then the possibility to take the limit to (1.4) for M → ∞. One might hope to
arrive at some transform acting on the polynomials Hn(x|qj,N ) (n = 0, 1, . . . , N − 1; j and
N co-prime) but only involving their values at the zeros of TN(x), i.e., at the points involved
in Zhedanov’s [28] orthogonality relations for these polynomials. At the moment we have no
idea how to proceed here.

5. Finite Fourier q-extended eigenvectors

We now show that relations (4.10) and (4.11) enable us to construct q-extensions of Mehta’s
eigenvectors (1.4) of the finite Fourier transform when the deformation parameter q is a root
of unity. For this we need the following trivial observation.

Lemma 5.1. Let V be a complex linear space. Let f, g ∈ V and a, b ∈ C such that �f = a2g

and �g = b2f . Then

�(bf ± ag) = ±ab(bf ± ag).

Combination of this lemma with (4.10) and (4.11) shows that the functions

inq−n2/8
j,N f (N)

n (.|qj,M) ± q
n2/8
j,M f

(N)
n (.|qj,M)

are eigenfunctions of �(N) with eigenvalues ±in. So put

F (N)
n (r|qj,M) := Re

(
eiπn/8q

−n2/8
j,M f (N)

n (r|qj,M)
)
,

G(N)
n (r|qj,M) := Im

(
eiπn/8q

−n2/8
j,M f (N)

n (r|qj,M)
)
.

Then

�(N)
(
F (N)

n (.|qj,M)
)
(r) = inF (N)

n (r|qj,M), (5.1)

�(N)
(
G(N)

n (.|qj,M)
)
(r) = −inG(N)(r|qj,M). (5.2)

6. Concluding comments and outlook

We have demonstrated that the continuous q-Hermite polynomials for q, a root of unity are
interrelated by the classical Fourier transform (3.6). Then the technique of constructing the
eigenvectors of (1.2), pioneered by Mehta [22] and formulated in a more systematic way
by Dahlquist [16] and Matveev [21], has been employed in order to construct q-extended
eigenvectors of the finite Fourier transform.

Quite naturally, it would be of considerable interest to find out whether there are other
families of q-polynomials for q a root of unity, which also possess such simple transformation
properties with respect to the Fourier transform and, consequently, give rise to other q-
extensions of the finite Fourier transform (1.1). The point is that the continuous q-Hermite

7
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polynomials, considered in the present paper, belong to the lowest level in the Askey hierarchy
of basic hypergeometric polynomials [18]. Therefore it will be natural to attempt to apply the
same technique to the study of other q-families, which depend on some additional parameters
(and therefore occupy the higher levels in the Askey q-scheme).

Finally, another direction for further study is connected with q-extensions of the harmonic
oscillator in quantum mechanics [4, 15, 20]. We remind the reader that for proving the
fundamental formula (1.5) for Mehta’s eigenvectors F (n) of the finite Fourier transform
operator (1.2) it is vital to use the simple transformation property (1.6) of the Hermite functions
Hn(x) exp(−x2/2) with respect to the Fourier transform. Moreover, these eigenvectors F (n)

are actually built in terms of these Hermite functions taken at the infinite set of discrete

points x(k)
r :=

√
2π
N

(kN + r) , 0 � r � N − 1, k ∈ Z (cf (4.1)). In other words, Mehta’s
technique of proving (1.5) is based on introducing a discrete analogue of the quantum harmonic
oscillator. It seems that q-extended eigenvectors of the finite Fourier transform, constructed
in the foregoing sections, can be similarly viewed as discrete analogues of the q-harmonic
oscillator of Macfarlane and Biedenharn for q a root of unity.

We plan to continue our studies in both of these directions. But a focus of our attention will
be on constructing an explicit form of the finite-difference equation for the eigenvectors (1.3)
of the finite Fourier transform (1.1). From the group-theoretic point of view this amounts
to finding an adequate finite representation, associated with the Heisenberg–Weyl group
[19, 25]. Pure analytically this reduces to constructing explicitly a finite-difference operator,
which commutes with the finite Fourier transform operator (1.2) and therefore governs its
eigenvectors f (N)

n (s). We believe that while working on this paper we actually understood
better this way of looking at the problem of finding an explicit form of eigenvectors of the
finite Fourier transform (1.1).
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